
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
 

DEVELOPMENT AND CONTROL OF ROBOTIC ARMS 
FOR THE NAVAL POSTGRADUATE SCHOOL PLANAR 

AUTONOMOUS DOCKING SIMULATOR (NPADS) 
 

by 
 

Gary L. Cave 
 

December 2002 
 
 

 Thesis Advisor:   Michael G. Spencer 
 Second Reader: Brij N. Agrawal 

Approved for public release; distribution is unlimited 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
December 2002 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Title (Mix case letters) 
Development and Control of Robotic Arms for the Naval Postgraduate School Planar 
Autonomous Docking Simulator (NPADS) 

6. AUTHOR(S)   Gary L. Cave, LT, USN 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 A 

13. ABSTRACT (maximum 200 words)  
 

This thesis encompasses the development of two robotic arms for integration onto the Naval Postgraduate School 
(NPS) Planar Autonomous Docking Simulator (NPADS) servicing vehicle.  This research effort involved support structure 
design, fabrication, and construction, off-the-shelf motion control hardware integration, and control algorithm development and 
testing. 

The NPADS system is being built as a test platform for spacecraft docking and capture mechanisms designed for 
autonomous rendezvous and servicing missions.  As with the servicing vehicle, the robotic arms utilize a floatation system on 
an air-bearing granite table to provide a two-dimensional, drag-free environment.  DC brushless servo motors serve as 
shoulder, elbow, and wrist joints allowing planar motion of the two-link arms.  A National Instruments (NI) PXI computer and 
Motion Control card provide system processing and the software to hardware interface.  The NI LabVIEW software suite 
enabled development of manual control code and autonomous control subroutines compatible with the control software of the 
NPADS main body.  A single, wrist-mounted CCD bullet camera provides visual target acquisition for the robotic arm control 
system. 
Testing and analysis were completed in the NPS Satellite Servicing Laboratory on a table-based test harness to facilitate initial 
design iteration. 
 

15. NUMBER OF 
PAGES  

111 

14. SUBJECT TERMS   
Robotic Arms, Robotics, LabVIEW, Autonomous Docking, Satellite Servicing, Motion Control 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 

 i



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 ii



Approved for public release; distribution is unlimited 
 
 

DEVELOPMENT AND CONTROL OF ROBOTIC ARMS FOR THE NAVAL 
POSTGRADUATE SCHOOL AUTONOMOUS DOCKING SIMULATOR 

(NPADS) 
 

Gary L. Cave 
Lieutenant, United States Navy 

B.S., Georgia Institute of Technology, 1996 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2002 

 
 
 

Author:  Gary L. Cave 
 

 
Approved by:  Michael G. Spencer 

Thesis Advisor 
 
 

Brij N. Agrawal 
Second Reader 

 
 

Max F. Platzer 
Chairman, Department of Aeronautics and Astronautics 

 iii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 iv



ABSTRACT 
 
 
 
This thesis encompasses the development of two robotic arms for 

integration onto the Naval Postgraduate School (NPS) Planar Autonomous Docking 

Simulator (NPADS) servicing vehicle.  This research effort involved support structure 

design, fabrication, and construction, off-the-shelf motion control hardware integration, 

and control algorithm development and testing. 

The NPADS system is being built as a test platform for spacecraft docking and 

capture mechanisms designed for autonomous rendezvous and servicing missions.  As 

with the servicing vehicle, the robotic arms utilize a floatation system on an air-bearing 

granite table to provide a two-dimensional, drag-free environment.  DC brushless servo 

motors serve as shoulder, elbow, and wrist joints allowing planar motion of the two-link 

arms.  A National Instruments (NI) PXI computer and Motion Control card provide 

system processing and the software to hardware interface.  The NI LabVIEW software 

suite enabled development of manual control code and autonomous control subroutines 

compatible with the control software of the NPADS main body.  A single, wrist-mounted 

CCD bullet camera provides visual target acquisition for the robotic arm control system. 

Testing and analysis were completed in the NPS Satellite Servicing Laboratory on 

a table-based test harness to facilitate initial design iteration. 
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I. INTRODUCTION  

The current design philosophy for most satellites involves developing a spacecraft 

that can support a given payload for a set number of years, usually between seven and 

ten, with the expectation that a follow-on spacecraft will be developed as the replacement 

by End of Life (EOL).  The primary driver behind this philosophy is the perceived need 

for human involvement in repair and refueling operations.  Since manned missions are 

restricted to shuttle-capable altitudes and inclinations, satellites that operate in the 

Medium Earth Orbit (MEO), Geosynchronous Earth Orbit (GEO), High Earth Orbit 

(HEO), and even Low Altitude Polar Orbit are not considered accessible for repair and 

replenishment. 

The research involved in this thesis calls for a paradigm shift in satellite design.  

The Naval Postgraduate School and several other renowned research universities are 

exploring the feasibility of autonomous on-orbit docking of spacecraft and the use of 

robotic technology to enable repair and replenishment of vital systems and consumables, 

such as fuel.  The Department of Defense and commercial ventures, alike, should be 

interested in the ability to readily extend mission life of the multi-million (or billion) 

dollar investments that they place in space.  Improving productivity and cutting life cycle 

costs are the two primary goals of the new design philosophy.  The following sections 

illustrate only a portion of the current research projects and operational equipment being 

developed toward these goals. 

 

A. BACKGROUND 

1.  On-Orbit Spacecraft Docking 

Spacecraft docking began in 1966 during the Gemini program and has continued 

throughout the life of the manned space program, including the current Shuttle-to-

International Space Station (ISS) missions.  Yet, every American docking mission to date 

has required human intervention, or “man-in-the-loop.”  However, in November 1997, 

the National Space Development Agency of Japan (NASDA) launched Engineering Test 

Satellite VII (ETS-VII), a set of two satellites, the chaser and target, placed in a 550 

1 



kilometer, circular orbit to test the feasibility of autonomous spacecraft docking [Ref. 1].  

The two satellites (shown in Figure 1) were launched together, separated on orbit, and the 

chaser maneuvered to recapture the target.  Though some of the experimentation involved 

earth-based telerobotic commands vice pure autonomous control, ETS-VII provided an 

on-orbit demonstration of the capabilities required for future ventures. 

 
Figure 1 Engineering Test Satellite VII (After: Ref. 1) 

 

A variety of organizations, including the National Aeronautics and Space 

Administration (NASA) and the Defense Advanced Research Projects Agency (DARPA), 

have projects ongoing in the area of autonomous docking.  NASA’s Space Launch 

Initiative to develop safer more affordable methods of space travel spawned the 

Demonstration of Autonomous Rendezvous Technology (DART) program from Orbital 

Sciences Corporation.  This project will test a completely autonomous control routine to 

raise a chase vehicle to an orbit near its target, move the vehicle within fifteen meters of 

the target to test station-keeping abilities, and then demonstrate collision avoidance 

maneuvering.  Meanwhile, DARPA’s Orbital Express mission initiated development of 

the ASTRO vehicle, a prototype servicing satellite, as well as projects at a number of 

universities, including the University of Maryland’s RANGER program, also 

investigating the use of robotics for spacecraft servicing. 
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Beyond the high profile projects listed above, Stanford University has developed 

the Multi-Manipulator Free Flying Space Robots to test cooperative control of multiple 

vehicles in capture and servicing operations.  The University of Washington Department 

of Aeronautics and Astronautics utilized a class design project to develop a shuttle-based 

demonstration of on-orbit autonomous control, the On-Orbit Autonomous Satellite 

Servicer (OASiS).  And the Naval Postgraduate School Department of Astronautics hosts 

a joint facility with the Air Force Research Laboratory to develop the NPS Planar 

Autonomous Docking Simulator (NPADS) system described later in this chapter. 

2.  Space-Based Robotics 

As with on-orbit docking, robotics has a reasonable legacy in space, beginning in 

earnest in the early 1980’s with the addition of the Shuttle Remote Manipulator System 

(SRMS).  Further developments have included CanadaArm, or the Space Station Remote 

Manipulator System (SSRMS), and the Japanese Experiment Module Remote 

Manipulator System (JEMRMS) both built for the International Space Station.  These 

three systems, however, involve large mass, large volume components and require the 

involvement of a human operator.  Even the Special Purpose Dexterous Manipulator 

(SPDM) illustrated in Figure 2, being developed by Canada to accomplish delicate 

maintenance and servicing tasks aboard ISS, requires a member of the ISS crew to 

conduct operations. 

 
Figure 2 Special Purpose Dexterous Manipulator (From:  Ref. 2) 
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Further, smaller robots being developed by NASA (Robonaut, illustrated in 

Figure 3) and the University of Wisconsin (GOFER) to assist astronauts during 

extravehicular activity (EVA) still require a human operator.  The design driver is to 

reduce the number of EVAs required of the shuttle or ISS crew, by replacing one of the 

two astronauts currently required for each EVA with a robot assistant, in order to 

minimize space exposure and increase the level of safety.  Robonaut is a highly advanced 

robotic assistant that provides more than forty-five degrees of freedom, over 150 sensors, 

and two fully dexterous hands; but, the fact remains that two astronauts are required still 

for each EVA, the second being on-station (or in the shuttle) utilizing virtual reality 

interfaces [Ref.3]. 

 
Figure 3 Robonaut (From:  Ref. 3) 

 

In order to minimize the risks (i.e., human error) and risk factors (i.e., fatigue) 

created by human involvement, autonomous operations by highly precise robotic systems 

are required.  Terrestrial organizations have moved to robotic systems for repeatable 

tasks requiring high precision in manufacturing, industrial inspection, and even surgical 

applications.  Space-based robotics must follow this course.  Again, the ETS-VII mission 

included experimentation with earth-based operators commanding the robotic arm 

attached to the chaser vehicle, but there is a significant time delay between command and 

output, further proving the need for a fully autonomous system.  This thesis provides the 
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initial design of a robotic arm motion control assembly for integration into the NPADS 

system, with the vision of future development into a completely autonomous control 

scheme. 

3.  Naval Postgraduate School (NPS) Satellite Servicing Laboratory 

The Satellite Servicing Laboratory (SSL) is the newest of four laboratories 

included within the Spacecraft Research and Design Center (SRDC) at the Naval 

Postgraduate School.  The mission of the SSL is to investigate technologies developed 

toward on-orbit rendezvous of spacecraft with the goal of prolonging spacecraft 

operational life.  The Satellite Servicing Laboratory served as host for the research 

conducted for this thesis.  The Naval Postgraduate School (NPS) Planar Autonomous 

Docking Simulator (NPADS) system provides the focus of research in the SSL and is 

jointly funded by NPS and the Air Force Research Laboratory (AFRL). 

 

B. NPS PLANAR AUTONOMOUS DOCKING SIMULATOR (NPADS) 

The NPADS program was started in order to provide an autonomous servicing 

spacecraft test platform.  It is envisioned that the NPADS system will serve as a 

functional 2D simulator for validation of advanced control algorithms, docking 

mechanisms, manipulators, and any other software or hardware developed for space 

rendezvous, docking, and repair missions.  As part of initial development of this lab, 

research was divided into two areas: control of the main servicing vehicle and control of 

the capture and manipulation devices (robotic arms).  Figure 4 provides an illustration of 

the NPADS design concept; as shown in the figure, the NPADS system will eventually 

expand to include a target vehicle as well. 
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Figure 4 NPADS Design Concept 

 

1.  Servicing Vehicle 

The first thesis produced from the NPADS system provided the design of the 

servicing vehicle main body and an initial PD control law designed for autonomous 

operation of the vehicle [Ref. 4].  The NPADS main body concept is depicted in Figure 5. 

 
Figure 5 NPADS Servicing Vehicle Concept 
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a.  Hardware 

The NPADS servicing vehicle utilizes a compressed air system to provide 

floatation of the vehicle on an air-bearing granite table, thus providing two dimensional 

freedom of motion, simulating a 2D space environment.  The vehicle includes an onboard 

PXI computer for control, which makes use of a reaction wheel and eight gas thrusters to 

regulate position and orientation.  A black and white CCD camera, acting as a star sensor, 

and a MEMS angular rate sensor provide feedback to the attitude determination and 

control program.  To provide freedom of motion and total autonomy, all of the systems 

operate on DC power provided by two lead-acid batteries and a series of voltage 

converters.  A wireless Ethernet connection allows the control computer to offload data 

for processing by an off-board workstation.  The vehicle also includes a forward-looking 

CCD camera for target detection, though this device has not yet been implemented. 

b.  Software 

The NPADS main body has both manual control and autonomous control 

programs.  These algorithms were developed using the National Instruments LabVIEW 

software suite. 

2.  Robotic Arms 

This thesis provides the characteristics for the two robotic arms designed for 

integration onto the servicing vehicle.  The initial design concept is illustrated in Figure 

6. 

CameraCamera

 
Figure 6 NPADS Robotic Arm Design Concept (After: Ref. 5) 
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a.  Hardware 

The NPADS robotic arms consist of a two-link, three-joint architecture 

offering three degrees of freedom.  Utilizing pre-existing technology for the system 

components, the arms use three DC hollow-shaft brushless servo motors, which act as the 

shoulder, elbow, and wrist joints, with worm gearing and integrated optical encoders for 

position and velocity feedback to the control code.  Three servo amplifiers translate the 

control voltages into a three phase distribution to move the joint motors.  The arms float 

on the air-bearing table using an identical compressed air system as the main body, 

allowing for immediate integration of the arms.  A PXI control computer and PXI-

technology motion control card are used to control the arms.  And, again, all components 

utilize DC power such that the system is autonomous.  A black and white CCD camera is 

mounted to the left wrist joint motor shaft for target acquisition.  Currently, there are no 

manipulation or capture devices implemented on this system. 

b.  Software 

As with the control code of the main body, the National Instruments 

LabVIEW suite, including the FlexMotion and IMAQ modules, was used for software 

development.  Control code programming included a manual control system and several 

autonomous control algorithms for eventual integration with the main body control code. 

 

C. SCOPE OF THESIS 

This thesis comprises the work involved in the design, construction, and initial 

control software programming of two robotic arms for the NPADS servicing vehicle.  

This effort is one of the first phases of development of a fully autonomous, neural 

network-based, rendezvous and docking test platform.  This is the second thesis written 

in relation to the NPADS system. 

Following initial research regarding motion control systems, two robotic arms 

were constructed using various off-the-shelf motion control components.  This step 

involved design and fabrication of a structural support frame and test yoke, creation of a 

variety of wiring harnesses to integrate the components, and stage-by-stage testing of 

component interfaces.  Upon completion of hardware integration, the first arm was wired 

8 



to the control computer in order to accomplish electronic tuning of the joint motors and 

initial testing of the system using pre-programmed software.  Once system integrity was 

established, a manual control code was built and tested; then, several autonomous control 

subroutines designed for integration into the NPADS control architecture were 

developed.  Finally, a vision system was integrated to provide target acquisition.  This 

research concluded with successful testing of each of the control algorithms and 

integration of the first arm onto the NPADS servicing vehicle.  The second arm was 

connected to the test harness for future development and research. 
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II. HARDWARE & INTEGRATION 

The robotic arms for the NPADS servicing vehicle were designed to operate 

either while the arms were attached to the NPADS vehicle (Figure 7) or while attached to 

a test structure (Figure 8) for independent testing of the arms.  Modularity, 

interoperability, size, and cost were drivers for the components selected.  This chapter 

describes the individual hardware components used in the design of the NPADS robotic 

arms and their integration into the system. 

 
Figure 7 NPADS Vehicle with Robotic Arms 
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Figure 8 Robotic Arm Attached to Test Harness 

 

A. OVERVIEW 

As with the NPADS vehicle, commercial-off-the-shelf (COTS) components were 

used to alleviate the need for major modification, drive down cost, and minimize the risk 

of interoperability problems.  Since this project was aimed at creating a test-bed for 

further research of docking systems and manipulation devices, time was a critical factor 

that led to the use of COTS items to develop the simulator as efficiently as possible.  

Similarly, the simulator was initially designed for use in a confined space (a 6’ x 8’ 

granite air-bearing table), thus defining a need to keep the components as small as 

feasible. 

Again, the NPADS robotic arms were designed to mate to the base plate of the 

NPADS servicing vehicle as well as a test harness, as shown in the earlier figures.  The 3-

joint (shoulder, elbow, wrist), 2-link design is depicted in Figure 9.  Each link consists of 

a motor support structure, a rigid interjoint link, 2 floatation air pads, a DC Brushless 

Servo motor, and a 3-phase amplifier.  The inputs and outputs from the joint motors and 

their associated amplifiers are connected to a Universal Motion Interface which connects 

to a Motion Control Card in the Onboard Control Computer.  The wrist of the left arm 

has a black and white wide field-of-view bullet camera attached which is connected to the 

Onboard Control Computer via an Image Acquisition Card.  These components are 
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described in detail below.  Table 1 contains a summary of the characteristics of the 

components. 

 
Figure 9 Conceptual Drawing of Robotic Arm Design 

 
Table 1 NPADS Robotic Arm Component Characteristics 

 Parameter Value 
Overall Length1 20.5 in 
Overall Width2 5.25 in 
Width Stowed3 15.5 in 
Height 9 in 

Physical Attributes 

Mass4 22 lb 
Motor Type DC Brushless Servo 
    Operating Voltage 24 V 
    Operating Current5 0.2 A 
    Rated Torque6 115/233 in-lb 
    Gear Ratio6 50:1/100:1 
    Feedback Method Optical Encoder 
Amplifier7 PWM Servo Amplifier 
    Operating Voltage 24 V 
    Max Continuous Current 6 A 
Universal Motion Interface8 4 axis 
    Operating Voltage 5 V 

Motion Control 

    Operating Current 0.5 A 
Computer National Instruments PXI 
    Processor 866 MHz Pentium III 
    Data Acquisition Cards Motion Control/Vision Computer System 

    Voltage 24 V (DC or AC) 
Target Alignment Camera ProVideo Bullet CCD Vision System Shutter Speed 100 Hz 

1.  From center of shoulder joint to center of wrist joint 
2.  At joint 
3.  Measured from side of NPADS vehicle 
4.  Does not include mass of amplifiers 
5.  Current is dependent on required torque 
6.  Shoulders are  higher torque/higher geared motors than elbow and wrist motors 
7.  One amplifier per joint (six total) 
8.  One UMI per arm (2 total) 
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B. STRUCTURES 

The joint motor support structure was constructed using 6061-T6 Aluminum and 

was designed to minimize weight and height, while providing the structural integrity 

necessary for the expected torques placed on the joints.  Each support structure is 

comprised of a 1/4-inch base plate which supports 2 air pads (elbow and wrist only), a 

1/4-inch split top plate with tensioning screws to mate around the joint motor housing, a 

1/4-inch back plate (elbow and wrist only) that allows for connection to the link, and four 

1/2-inch square rods acting as standoffs.  Since the shoulder joint drives the height of the 

arm, the elbow and wrist standoffs were designed such that their air pads would be even 

with the granite table when the floatation system was off.  The frame uses 10-32 screws 

to connect the individual pieces. 

The arm links are again constructed of 6061-T6 Aluminum.  The links are 2-inch 

by 1-inch by 1/8-inch channel, 9-inches long.  In one end, holes are drilled for mounting 

to the joint motor shaft, in the other, mounting holes allow connection to the back plate of 

the next joint motor support with a groove cut such that the joint motor wiring harnesses 

can reside within the channel.  The link to back plate connection is made using 10-32 

screws, the link to motor connection is accomplished using M6 screws.  Figure 10 

illustrates the joint motor support structure and joint linkages.  Appendix A contains 

detailed drawings of these structural components. 

 
Figure 10 Structural Components 
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C. FLOATATION COMPONENTS 

1.  Air Pads 

In order to simulate the space environment, the arms either had to support their 

own weight such that no contact was made with the granite table or a floatation system 

was needed to minimize the effects of drag.  For simplicity and weight reduction, the 

second option was chosen.  The vehicle and arms rest on an air-bearing granite table.  

The shoulder joint attaches directly to the vehicle frame and is supported by four 2-1/8 

inch (55 mm) air pads that levitate the vehicle.  The elbow and wrist support structures 

each connect to two 1-9/16 inch (40 mm) air pads.  These air pads, manufactured by 

Aerodyne Belgium, provide a 20-micron cushion of air between the pads and the table 

that allow the joints to glide relatively friction-free across the table. 

 

2.  Air Supply System 

Compressed air is supplied to the arm air pads at between 40 and 70 psi when 

attached to the vehicle due to a common supply line, and at 5 to 10 psi when attached to 

the test harness.  This air is supplied via a 19 cu. ft. scuba tank, which supplies air at 3000 

psi, a standard scuba first-stage regulator(ScubaPro Mk 16), which reduces pressure to 

150 psi, and an in-line LP-LP regulator, made by Teco Pneumatic, which further reduces 

the air to usable ranges.  The in-line regulator can be set to provide from 0 to 150 psi.  

The system weight determines the pressure needed to provide unobstructed motion. 

The air is provided from the tanks to the air pads through a system of 

polyurethane tubing.  Coming off the Mk 16 regulator is 1/4 ID x 3/8 OD tubing which 

connects to the in-line regulator.  From the output of the second regulator, the tubing is 

reduced to 1/8 ID x 1/4 OD and, down again, to 1/16 ID x 1/8 OD which connects to the 

input of the air pads.  Various polyurethane junctions (Ys and Ts) are used to connect the 

tubing.  The material used for the links allows the tubing to reside inside the channel 

reducing the likelihood of snagging and wear.  Figure 11 shows the air supply system and 

joint motor air pads. 
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Figure 11 Floatation Components 

 

D. POWER COMPONENTS 

The overriding goal of this research was simulating autonomy.  In keeping with 

this goal, all system components run on DC power, such that batteries could be used to 

provide the power necessary to run the entire vehicle and the arms.  A system of two 

Panasonic 12-Volt, 20-Amp hour lead-acid batteries are wired in series on the vehicle to 

provide a 24-Volt output.  The battery layout is provided in Figure 12. 

 
Figure 12 NPADS Batteries 

 

A system of DC-DC converters is used on the vehicle to provide ±5V, +6V, 

+12V, and +18V required for various components of the NPADS vehicle.  The joint 

motors, amplifiers, and control computer run directly off the batteries at 24V.  However, 
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the Universal Motion Interfaces need 5V input and the bullet camera requires 12V.  Due 

to the direct feed of 24V off the batteries, it was necessary to install a master switch that 

isolates power from the system; however, so that testing of the NPADS vehicle could be 

conducted without powering the arms, a second set of switches were installed such that 

the arms can be electrically isolated from the vehicle.  A barrier strip is located on the 

rear of the second shelf of the vehicle to provide a centralized distribution point for the 

voltages required.  Figure 13 illustrates the power distribution layout for the robotic arms.  

Table 2 delineates the layout of the barrier strip for arm power. 

 
Figure 13 Power Isolation & Distribution Components 

 

Table 2 Arm Power Distribution Barrier Strip Diagram 
1 2 3 4 5 6 7 8 9 10 11 

24V GND 24V GND 24V GND 5V GND open 24V GND 

Master 
to 

Comp. 

Master 
to 

Comp 

Master 
to Arm 

Isol. 

Master 
to Arm 

Isol. 

Arm 
Isol to 
L Arm 

Arm 
Isol to 
L Arm 

DC-DC 
to UMI 

DC-DC 
to UMI 

N/A Arm 
Isol to 
R Arm 

Arm 
Isol to 
R Arm 

 

E. MOTION CONTROL COMPONENTS 

Motion Control consists of a command being developed in software, sent from an 

I/O board to a breakout box, interpreted by an amplifier, and further subdivided into 

commands (voltages) that can be understood by an electromechanical device (i.e., a joint 

motor).  In the process of designing a motion control system, many options are available, 
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primarily in choosing the joint motor:  multi-degree-of-freedom motors, stepper or servo 

motors, brushless or brushed motors, et cetera.  The design goals for this research focused 

on a compact solution that would provide motion in one axis at a projected torque 

threshold and that the motion control system would have full compatibility with the 

control system of the NPADS vehicle.  These criteria led to the selection of the 

components described in the following sections.  Figure 14 illustrates the location of the 

various components on the NPADS vehicle.  Appendix B provides wiring information for 

the motor harnesses, amplifier, and UMI. 

 
Figure 14 Motion Control System Layout 
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1.  Joint Motors 

Harmonic Drives PowerHub Hollow Shaft Brushless DC Servo motors (Figure 

15) were selected for the joint motors.  Two models, HKM-20-30 and HKM-20-60, are 

used for the shoulder joints and elbow/wrist joints, respectively.  The HKM-20-30 model 

provides approximately twice the torque (233 in-lb or 26 N-m) of the other model; as 

with a human arm, the shoulder of a robotic arm needs to be the strongest joint in order to 

handle the loads caused by displacement.  Externally, there is no distinction between the 

two motors. 

 
Figure 15 Harmonic Drive DC Brushless Servo Motor 

 

These motors were chosen for a variety of reasons.  First, the joint motors needed 

to run on DC power in order to maintain autonomy.  Second, a servo motor provides a 

smoother motion than a stepper motor since it possesses a limitless number of acceptable 

positions.  Servo motors are penalized in accuracy and repeatability; but with the limited 

range of motion required for this test bed, these factors have little impact.  Third, the 

hollow shaft design was key to running the air supply lines to the air pads at the elbow 

and wrist joints.  Fourth, brushless motors work by means of electronic commutation.  

Since there is no physical contact, wear on the motor is reduced.  Finally, these motors 

provide internal worm gearing, at a 100:1 ratio for the shoulders and a 50:1 ratio for the 
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elbows and wrists, and an integrated optical encoder (4000 counts/rev of drive shaft).  

The addition of these two subcomponents greatly simplified the prospect of component 

integration and interoperability. 

2.  Amplifiers 

Advanced Motion Controls B15A Series (B12A6L) Brushless Servo Amplifiers 

are used to interface between the controller and the motors.  Each joint motor requires a 

separate servo amplifier (Figure 16).  The amplifier receives commands from the 

controller which are converted to a three-phase voltage output to the motor to control 

electronic commutation as desired, while receiving input from the motor’s Hall sensor, 

which tracks the commutation of the motor, for feedback. 

 
Figure 16 B12A6 Servo Amplifier 

 

3.  Universal Motion Interfaces 

The Universal Motion Interface (UMI-7764) is a National Instruments 

connectivity accessory that connects the servo amplifiers, motors, encoders, and switches 

for up to four axes to the associated plug-in motion control board (PXI 7344) [Ref. 6].  

Each arm requires a separate UMI.  Figure 17 shows a UMI with one arm (3 axes) wired.  

The wiring layout of the UMI is included in Appendix B. 
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Figure 17 Universal Motion Interface 

 

4.  Home Switches 

As mentioned previously, the optical encoder is located on the drive shaft of the 

joint motors.  Consequently, there are multiple Index signals per single revolution of the 

output shaft, therefore it is impossible to identify a repeatable reference location at 

power-up using the encoders.  To alleviate this problem, a series of Normally Off-

Momentary On switches were placed at the parked (power-up) position of the shoulder 

and elbow joints so that software could be developed to find home, the repeatable 

reference position, each time the system were initialized.  This function will be further 

defined in a later section.  Figure 18 shows one of these switches. 

 
Figure 18 Home Switch 
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F. COMPUTER AND ASSOCIATED COMPONENTS 

1.  Chassis and Controller 

On the second level of the NPADS vehicle, an onboard computer is mounted 

which controls all vehicle operations including motion control of the robotic arms.  The 

computer, made by National Instruments, includes a chassis (1000B), controller (PXI 

(PCI eXtensions for Instrumentation) 8175), and various input/output cards described 

below.  The 1000B chassis allows for both AC and DC operation and includes a 

controller interface and seven expansion slots for additional cards.  The PXI 8175 

controller is driven by an 866 MHz Pentium III processor, includes a hard drive, 3-1/2 

inch floppy drive, Ethernet port, USB ports, and the standard interfaces of a desktop 

computer, and operates under the Windows 2000 operating system.  PXI technology 

allows for a much more compact system by pushing many of the specialized functions to 

the expansion cards for processing.  Figure 19 shows the onboard computer. 

 
Figure 19 NPADS Onboard Computer 

 

2.  PXI 7344 Motion Controller Card 

The PXI 7344 Motion Controller uses a dual-processor architecture with high 

speed communications to allow on-card processing of up to four axes (motors), either 
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stepper or servo, executing up to ten simultaneous motion programs, with 62 

microsecond PID/PIF servo updates, encoder feedback up to 20 MHz, and various limit 

and trigger inputs [Ref. 7].  Each Motion Controller drives one robotic arm since there 

are three joint motors (axes) per arm.  The 7344 board connects to a UMI via a 68-pin 

VHDCI connector. 

3.  PXI 1408 Image Acquisition (IMAQ) Card 

The PXI 1408 is a monochrome IMAQ board that supports up to four video inputs 

from most standard video sources, using 8-bit flash analog to digital conversion to 

acquire and store an image [Ref 8].  The left robotic arm includes a black and white 

camera, mounted on the wrist, which provides video input to the PXI 1408 card.  The 

1408 board connects to the camera via a BNC connector. 

4.  Test Computer 

For operation in the test harness, a second National Instruments computer is used.  

This computer consists of a 1002 chassis, an 8156B controller, one 7344 Motion Control 

Card, and a PXI 1408 Image Acquisition Card.  The 1002 chassis is smaller, with only 

three expansion slots, and operates only on AC.  The controller is driven by a 333 MHz 

MMX processor [Ref. 9] originally operating with the Windows NT operating system; 

however, an upgrade was conducted to Windows 2000 for interoperability.  This 

computer is responsible solely for offboard testing of the robotic arms.  The test computer 

is shown in Figure 20. 

 
Figure 20 Robotic Arm Test Computer 
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G. VISION COMPONENTS 

A ProVideo CVC-320WP CCD camera is attached to the wrist of the left robotic 

arm and is used for target acquisition/position verification.  The camera contains a 1/3 

inch fixed focal length image sensor that operates at a shutter speed of 100 Hz.  The 

bullet camera is powered by 12 VDC.  Figure 21 shows the camera mounted on the left 

wrist. 

 
Figure 21 Robotic Arm Bullet Camera 
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III. CONTROL SOFTWARE 

Development of software for the NPADS robotic arm motion control system was 

accomplished using the National Instruments LabVIEW 6i software suite and associated 

modules.  By leveraging a single vendor for both hardware and software for much of the 

motion control system, interoperability and translation problems were bypassed.  

National Instruments PXI technology is based on: 

… an architecture that supports mechanical, electrical, and software 
features tailored to industrial instrumentation, data acquisition, and 
automation applications [Ref 9, 1-3]. 

Through backplane interfacing with the various specialty control boards, the PXI 

controller is able to schedule tasks more efficiently.  LabVIEW was developed by 

National Instruments to take advantage of this architecture.   

LabVIEW is a graphical programming language; unlike traditional languages 

such as FORTRAN or C, LabVIEW uses a series of icons, which are visual 

representations of commands or subroutines, and a wiring tool to connect icons to one 

another to create a functional program.  For many of the specialty control boards, 

modules are included in the LabVIEW suite for function-specific commands; for 

example, the 7344 Motion Control card uses many commands included in the 

FlexMotion module – these commands are tailored for motion control applications.  The 

chapter that follows discusses the development of the LabVIEW control program and 

subroutines designed for operation of the NPADS robotic arms. 

 

A. OVERVIEW 

The motion control program was developed in several stages.  Initially, once 

hardware integration was completed, it was necessary to calculate the gains for each joint 

motor to ensure stable operation.  Normally an intensive set of calculations using 

experimental data and basic control equations is required; however, LabVIEW includes a 

tool called the Measurement & Automation Explorer (MAX) which contains a set of sub-

programs, as part of the FlexMotion software module, designed to test servo motors and 
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identify gains and other useful parameters.  Thus, the relatively difficult task of tuning the 

joint motors was simplified greatly through the automated method included in the 

software suite.  Next, to verify operational stability and test the ability to control the 

motors, a Manual Control program was developed using standard LabVIEW commands 

in conjunction with those in the FlexMotion module.  Finally, a series of autonomous 

subroutines were developed for eventual use in the NPADS robotic arm onboard control 

program.  Though manual control was tested briefly on the NPADS vehicle to verify 

telerobotic control, all tests and operations using the autonomous code to date have been 

conducted on the test harness. 

 

B. MOTOR TUNING 

Measurement & Automation Explorer is a versatile tool used to ensure proper, 

efficient interaction between computer hardware, software, and third party functional 

hardware.  Figure 22 shows the MAX Configuration menu for the test computer.  Under 

the Devices and Interfaces folder are subfolders for the computer ports and the two 

expansion cards: IMAQ PXI-1408 and PXI-7344.  Also, under the 7344 subfolder, the 

various functional folders for Motion Controller setup and initialization can be seen.  In 

short, the Device Resources folder provides motion controller to chassis interface 

information, Default 7344 Settings (see Appendix C) enables the user to input specifics 

of third party motors and feedback devices such that signals can be passed between the 

controller and these components (an example is presented in Figure 23), the Interactive 

folder provides the option of 1-D or 2-D manual control of joints for testing connectivity, 

and Calibration includes the tools for automatically or manually tuning servo motors. 
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Figure 22 Measurement & Automation Explorer Configuration Menu 

 

 
Figure 23 MAX Default 7344 Setting Axis Configuration Menu 
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The only option under the Calibration folder is Servo Tune, which contains five 

pages for various control settings and testing.  The first of these pages is Main, which 

allows the user to choose which axis to tune and the method (manual or automatic).  The 

Manual option was used for tuning the NPADS robotic arms.  The middle three pages 

provide tools for generating a Step Response, Trajectory, and Bode plot for a given set of 

parameters.  The final page, Control Loop, allows the user to vary the value of the PID 

control gains for the motion control system on the given axis.  Changing the values of the 

proportional gain (Kp), derivative gain (Kd), integral gain (Ki), and derivative sampling 

period (Td) provide various, often unstable, results during the iterative process of servo 

tuning.  Following the instructions provided by National Instruments’ online support 

center [Ref 10] for manually tuning a motor, all six joint motors were tested and 

categorized.  Figure 24 shows the interactive Control Loop page used to manually adjust 

the PID control parameters.  Appendix C provides the calculated gains. 

 
Figure 24 MAX Servo Tune Control Loop Page 

 

Following motor tuning, the aforementioned 1-D interactive module of MAX 

allowed preliminary testing of the joints individually to ensure proper performance.  This 
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testing proved 360 degree motion, velocity control, positional control, encoder operation 

and verified encoder count for the output shaft as 400,000 counts per revolution for the 

shoulder motors and 200,000 counts per revolution for the elbow/wrist motors (the 

difference is due to the gear ratio of the two models). 

Finally, the most important application of MAX is that once all of the settings are 

properly defined and the motors are tuned, MAX saves the data to a configuration file 

unique to the controller.  Therefore, when control programs, such as the ones that follow, 

are written, the configuration file can be called via a FlexMotion icon that will initialize 

the 7344 Motion Control card to the parameters saved in that file.  Each time the system 

is powered down, the controller must be initialized prior to operation of the robotic arms. 

 

C. COMBINED CONTROL 

1.  Combined Control Code Interface 

The MAX 1-D interactive module provided an important tool in testing 

operability of the joints individually, but a 3-D control program was needed to fully flex 

the controller to ensure that multi-joint operations were feasible.  The design philosophy 

behind the manual control program focused on creating a real-time command-in, desired 

outcome-out system with relatively user-friendly control implementation.  LabVIEW, as 

stated previously, is a graphical programming language.  A LabVIEW program consists 

of two parts: a diagram, which is a graphical illustration of the program flow, and a front 

panel, which forms the I/O (input-output) interface between the user and the program.  

Built into the language is the ability to readily create controls (such as knobs and slide 

bars) and indicators (such as dials and digital readouts) on the front panel, corresponding 

to functions on the diagram, to facilitate use of a program.  Capitalizing on these built-in 

functions and for simplicity of testing and demonstration, both the manual control 

program and the subsequent autonomous control programs are built into one diagram and 

front panel.  Figure 25 shows the appearance of the full control program front panel.  The 

Emergency Stop switch (top left) and the Joint Velocity and Position indicators (top 

right) are shared by all sub-programs. 
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Figure 25 NPADS Robotic Arm Manual/Autonomous Controls Front Panel 

 

2.  Combined Control Code 

As stated in the previous section, both the manual and autonomous control codes 

are part of a single program.  Figure 26, Figure 27, and Figure 28, on the following pages, 

show the LabVIEW diagram in its entirety.  The rectangular structures in the diagram 

represent loops or subroutines of various types.  The outer rectangle is a while loop that 

allows the code to continue operation as long as the Emergency Stop routine is not 

activated.  The inner loops of the Control Code diagram, from top to bottom, are the 

Home Finder subroutine, Manual Control subroutine, Commanded Angle subroutine, 

Commanded X-Y subroutine, and Visual Target Acquisition subroutine.  These 

subroutines are discussed in detail later in this chapter. 
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The Emergency Stop routine, displayed in Figure 29, checks for an input from the 

Emergency Stop button on the front panel (represented by the T F box wired from the 

left, in the diagram) and uses the Case structure (rectangular frame) to determine the 

necessary operations.  If the signal is false (no input), the main While loop continues 

running and the Stop routine continues monitoring the signal for input; if true (input), the 

main While loop discontinues and all motors on the appropriate control card are sent a 

Kill command to disable power flow, stopping the motors.  This feature was implemented 

for safety during testing.  When the program is stopped, the motors are sent a Kill 

command as well. 

 
Figure 29 Emergency Stop Routine Code 

 

Another item of note is the Initialize Controller routine on the left side of the 

diagram, outside the while loop.  This routine (Figure 30) is a FlexMotion Virtual 

Instrument (VI), a subroutine or command provided with the software suite, that reads the 

current motion control configuration file developed using Measurement & Automation 

Explorer, as mentioned in the section on Motor Tuning.  The constant (number) wired to 

the icon identifies which 7344 Motion Controller is to be loaded with the configuration 

file.  This routine commences upon program initiation. 

 
Figure 30 Initialize Controller Routine Code 
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After controller initialization, the main While loop is entered and the code waits 

for a functional selection by the user.  The front panel master switches discussed earlier 

control this selection.  To ensure that the motion control system receives commands from 

a single subroutine at a given time, the Boolean mechanism illustrated in Figure 31 uses a 

series of comparisons (Boolean gates) to verify that only one function is chosen.  The 

dashed lines represent the command lines connected to the various subroutine loop 

structures. 

 
Figure 31 Switching Mechanism Code 

 

Finally, Figure 32 shows the code providing output to the indicators on the front 

panel.  For each joint, calculations are completed based on encoder feedback signals and 

the motor parameters (i.e., counts per revolution) to provide instantaneous motor 

velocity, motor position relative to the reference-zero, and (x,y) position for the elbow 

and wrist joints.  This figure illustrates the ease of integration between FlexMotion VIs 

(i.e., “FILTERED” gauge, which reads encoder signals for velocity, and the road icon, 

which reads position) and standard LabVIEW VIs (i.e., trigonometric functions and 

mathematical expressions).  This algorithm runs independent of any of the other 

subroutines – outputs are provided continuously following controller initialization. 
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D. MANUAL CONTROL 

3.  Manual Control Interface 

Figure 33, below, provides a closer look at the Manual Control program front 

panel.  To operate in Manual Control mode, the switch on the left must be toggled on and 

left in that position, with none of the other master switched triggered.  The switches for 

Shoulder Power, Elbow Power, and Wrist Power are isolation switches that will allow for 

1-D, 2-D, or 3-D operation.  Each axis has two dials for control of absolute velocity and 

desired position.  As stated earlier, this program was designed to run real-time such that 

the velocity control acts as a throttle, setting the instantaneous velocity of the joint, and 

the position control acts as a steering wheel; in other words, the joint does not have to 

reach the previous input (velocity or position) before adjusting to a new command. 

 
Figure 33 Manual Control Front Panel 

 

4.  Manual Control Code 

The Manual Control code (Figure 34) consists of a set of nested Case Structures.  

The code is initiated upon a True input to the outer Case and a False input from the 

Emergency Stop button.  If either of these inputs switch, motion will cease.  The three T-

F isolation inputs (from the front panel switches) for Shoulder, Elbow, and Wrist Power 

initiate entry into the inner Case structures. 
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Figure 35 Joint Operation/Isolation Code 

 

Figure 35 provides the two paths within the inner Cases.  If the joint power switch 

is ON, the True case (left) is initiated and the user will experience real-time control of the 

joint using the front panel controls for velocity and position.  These controls are 

restrained to +/- 90 degrees in position (all joints) and 3 degrees per second (shoulders) or 

6 degrees per second (elbows and wrists) in velocity for better control and safety.  The 

code uses FlexMotion’s Absolute Position mode with variable inputs to the Load Position 

and Load Velocity VIs to create instantaneous control.  Since a Case structure is used, as 

long as the switches remain True, the functions inside the structure will continue to run. 

If the joint power switch is OFF, the False case (right) is initiated and the joint is 

given a Halt command (the motor still receives power from the amplifier to hold position) 

using the Stop Motion VI.  As long as the Manual Control master switch remains ON and 

the Emergency Stop signal remains False, the isolation switches can be turned ON and 

OFF at will to provide simultaneous control of the desired number of joints. 

 

E. AUTONOMOUS CONTROL 

A single autonomous control algorithm was not created in the course of this 

thesis.  Rather, a set of four autonomous subroutines were designed to provide for 

autonomous functionality of the robotic arms when integrated with the NPADS vehicle 

control program.  These subroutines provide tools aimed at autonomy and various 

approaches to interaction with a vehicle based targeting architecture.  The design 

philosophy focused on generating a set of algorithms that could be commanded by 
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various inputs, thus facilitating flexibility in control system integration at such time that 

the arms are mated permanently with the vehicle. 

The autonomous subroutines are meant for implementation into a governing 

control program, namely that of the NPADS vehicle.  Each subroutine provides a 

segment of the autonomous control loop: self-knowledge, targeting, and control.  Figure 

36 provides a basic schematic of the robotic arm control scheme and identifies the 

subroutine associated with each function [Ref. 11].  The figure shows that tuning the 

motors provides the PID gain inputs to the control system and the subroutines described 

in the following sections supply the three components listed above, creating a standard 

closed-loop control system. 

 
Figure 36 Autonomous Control System Block Diagram 

 

1.  Home Finder 

a.  Home Finder Interface 

The first step in the process of autonomy involved devising a method to 

provide an accurate, repeatable reference point at power up, such that the joint has 

knowledge of its position at all times.  As stated in the previous chapter, the joint motors 

are equipped with an optical encoder that includes an Index mark.  LabVIEW’s 

FlexMotion module includes a Find Index subroutine and, ideally, the Index would be 
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used as the reference point; however, since the encoder is situated on the drive shaft, 

prior to the gearing, the Index is found multiple times per revolution of the output shaft, 

the number of times being determined by the gear ratio.  For an application where the 

motors were turning many revolutions, the Index would be a useful tool; but, joint motion 

of the arms is restricted to less than one revolution, which makes the Index signal useless 

since a dependable, repeatable instance is unlikely. 

To alleviate this problem, using FlexMotion tools, a new subroutine was 

created to be run only at power-up to find and set a reference position.  To ensure 

repeatability, the momentary switches mentioned in Chapter II were situated on the 

shoulder and elbow joints such that when the arms are in a stowed configuration, the 

inter-joint linkages would make contact with the switches.  This subroutine causes the 

joint motors, one at a time, to move toward their respective home switch until contact is 

made.  Once the computer receives the signal that Home is found, the position can be set 

to a MAX-defined value, whether zero or some other location.  This feature and more 

details of the code are provided in the next section.  Figure 37 shows the Home Finder 

trigger on the front panel, alongside the three joint position and velocity indicators 

(velocity is provided in degrees per second and position in degrees). 

 
Figure 37 Home Finder Trigger with Velocity and Position Indicators 

 

b.  Home Finder Code 

As with the Manual Control Code described above, and all of the 

following autonomous subroutines, the Home Finder code is built inside a Case structure 

to enable use of the Boolean switch.  Within the Case Structure lies a Sequence structure, 

having the appearance of a film frame, which allows a sequence of operations to be 

carried out one at a time.  There are seven frames to this sequence: two for each joint and 

one frame to end the subroutine.  Figure 38 shows the two frames required to find the 

reference position for the right shoulder joint.  The frame on the left utilizes FlexMotion 
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Velocity control, with a constant input to the Load Velocity VI causing the shoulder joint 

motor to continue moving clockwise (positive direction) until the momentary switch 

triggers that Home is found.  The While loop on the right side of the left frame causes a 

continuous query of the Home Input, checking for contact.  Once contact is verified, the 

motor is stopped and the Sequence moves to the next frame (Figure 38, right) where the 

Reset Position VI renames the current position to the position desired.  Table 3 lists the 

stowed positions for the shoulder and elbow joints of the two arms.  Though the 

algorithm included code for the wrist, the wrist joints have been ignored until such time 

as there is a manipulator or grapple mechanism installed so that the switches can be 

placed appropriately. 
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Table 3 Desired Home Positions 
LEFT ARM 

Shoulder -172,500 counts 
Elbow +65,750 counts 

RIGHT ARM 
Shoulder +175,500 counts 

Elbow -65,750 counts 

 

The final frame of the sequence, displayed in Figure 39, provides a means 

to end the Home Finder function.  The Master Switch is created as a Local Variable and 

when the subroutine has completed the sequence and gets to this frame, the master switch 

is tripped to the OFF position.  For implementation in the NPADS control code, this 

frame can be used to change a reference bit such that the algorithm is recognized as 

complete. 

 
Figure 39 Home Finder Code (Final Frame) 

 

2.  Commanded Angle 

a.  Commanded Angle Interface 

Once the initial position of the joints are known, a method for 

commanding the arm must be defined.  The first approach designed fed directly from the 

Manual Control program: angular commands.  The front panel, shown in Figure 40, is a 

system of a master switch, two commanded angle digital controls, and a send command 

switch.  Once the master switch is triggered, the user utilizes the two digital controls to 

provide desired absolute angular positions for the shoulder and elbow joints; then, 

depressing the GO button sends the command to the controller.  The desired angles must 
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be input in reference to the particular joint reference-zero as defined at power-up, ideally 

set at what would be thought of as “forward” relative to the joint motor (see Figure 41).  

The joint motors will proceed to the desired positions at a constant velocity as specified 

within the subroutine code. 

 
Figure 40 Angle Command Front Panel 

 

 
Figure 41 Robotic Arm Angular Coordinate Frame 

 

b.  Commanded Angle Code 

Once the Commanded Angle master switch is set to the ON position, the 

code displayed in Figure 42 begins to run.  The inputs from the shoulder and elbow 

digital controls, which the user utilizes to enter desired angles in degrees, is 

simultaneously converted into the proper position in counts for each of the motors and 

checked to ensure that the desired position is within the +/- 90 degree constraints.  If 

either of the desired angles are outside the constraints or the GO button has not been 

triggered, the inner False case (Figure 43) is implemented which simply maintains the 

GO switch in the OFF position; as with the Home Finder code, the GO switch is a local 
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variable.  Once the desired angles are verified and the GO button is triggered ON, the 

inner Case structure is entered for the True case.  Motion is initiated using FlexMotion 

Absolute Position mode with a constant velocity input to the Load Velocity VIs and the 

Load Position VIs being fed by the converted positions mentioned earlier.  The Move 

Complete VI checks both axes to verify that the commanded angles have been reached 

for both the elbow and shoulder.  Once motion is complete, the While loop on the right is 

entered and switches the GO switch to the OFF position, ending operation of the case. 
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Figure 43 Commanded Angle Code (False Inner Case) 

 

3.  Commanded X-Y 

a.  Commanded X-Y Interface 

The second approach is derived from the initial control algorithm used by 

the NPADS vehicle to identify its position on the granite table: x-y commands [see Ref. 

4].  Figure 44 illustrates the X-Y Command front panel, which includes the same basic 

user controls as the previous subroutine as well as x and y position indicators for the 

centers of the elbow and wrist joints (in inches).  Figure 45 describes the robotic arm 

coordinate system used for this algorithm.  The (0,0) point is set as the center of the 

shoulder joint hollow shaft.  Again, the user sets the Desired X and Desired Y digital 

controls for desired wrist joint position, then presses the GO XY button to initiate motion.  

As above, the arm joints are driven at a constant velocity set in the program code to the 

user-defined wrist position.  Due to the length of the arm, wrist position is limited to 

positions within a semi-circle having a radius of 20.5 inches (0.52 m).  

 
Figure 44 X-Y Command Front Panel 
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Figure 45 Robotic Arm X-Y Coordinate Frame 

 

b.  Commanded X-Y Code 

Upon initiation of this subroutine using the Commanded X-Y master 

switch, the user utilizes the digital controls to input the desired x and y position of the 

center of the wrist joint in inches; for example, if the user desired the arm to be 

positioned straight out, the desired position would equate to x = 0, y = 20.5 or (0, 20.5).  

Prior to motion initiation, the desired coordinates proceed through a series of algebraic 

and trigonometric functions to convert the x-y position, first, to a set of angles and then, 

finally, to a pair of encoder counts.  Once the position is verified to fall within the 

aforementioned semi-circle and the GO XY switch has been triggered, the inner Case 

structure is entered, which functions exactly as the one described for the Commanded 

Angle code.  The False case works exactly the same, as well, restricting the GO XY 

switch to achievable desired positions.  Figure 46 provides the code for this subroutine. 
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4.  Visual Target Acquisition 

a.  Visual Target Acquisition Interface 

The previous two subroutines, though autonomous in operation, require an 

external input, whether from a telerobotic user or an output from the NPADS onboard 

control program.  In order to create a fully autonomous control algorithm for the arms, an 

integrated sensor was required for target detection.  The bullet camera described in the 

previous chapter was chosen as this sensor.  Using an algorithm similar to that of the 

NPADS vehicle, it is possible to isolate the x-position of a target.  The front panel for this 

algorithm provides only a function ON/OFF switch, an indicator expressing x-position of 

the target in relation to the wrist camera centerline (in inches), and a raw data output from 

the image acquisition software (in pixels).  The Visual Target Acquisition algorithm may 

be started and stopped at any point as it is independent of the switching routine described 

above.  Figure 47 shows the Visual Target Acquisition user control and indicators. 

 
Figure 47 Visual Target Acquisition Front Panel 

 

Using only one camera, it is impossible to determine distance (y-position) 

from the arm; however, it is believed that once the targeting camera on the NPADS 

vehicle is implemented [see Ref. 4], it will be possible to determine y-position of the 

target using both cameras and an algorithm similar to a nautical running fix.  The lack of 

depth perception makes it difficult to localize even the lateral x-position since the field of 

view of the camera is dependent on the distance between the camera and the target.  This 

algorithm is designed for operation on the test harness, where the distance falls within a 

fixed range.  The rudimentary target consists of a single black circle, just over 6 inches in 

diameter. 

Use of the vision system is only in its infancy as part of this thesis.  

Implementation occurred in order to prove the ability to operate a vision system and 
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motion control system concurrently and to provide support for future growth.  The only 

degradation experienced operating the systems simultaneously occurred with the front 

panel indicators.  When the vision system is running, the position and velocity indicator 

update rate is slowed significantly. 

b.  Visual Target Acquisition Code 

LabVIEW’s Image Acquisition (IMAQ) Module and Image Builder were 

used to construct the algorithm shown in Figure 48.  Unlike the previous subroutines, this 

code was developed to run concurrent with any of the other functions; therefore the 

Boolean Find Target switch is not wired through the switching mechanism discussed 

earlier.  Once the master switch is turned ON, the Case structure is entered and image 

acquisition begins and continues until the switch is triggered OFF.  A snapshot, or single 

image, is captured from the bullet camera mounted on the wrist of the left arm.  Using 

IMAQ tools, the snapshot is filtered of clutter and edge noise.  The new image is then 

further filtered to identify circular structures that fall in a set range of diameters.  The 

range is specific to the distance expected while the arm is mounted to the test harness.  

Once the circle has been identified, the VI outputs raw Target Data in pixels, which is 

sent to the front panel.  The Target Data includes circle center x (horizontal) and y 

(vertical) position in pixels from the upper left corner of the image, the radius of the 

circle in pixels, and the core area which comes from a set algorithm in the VI.  The raw 

x-position is then converted into the x-position from the center of the camera (center of 

the wrist joint) in inches.  The image is 680 pixels wide, so the raw position is subtracted 

from the halfway point and then converted to inches using a pixels per inch conversion 

factor.  This conversion factor is determined by the proximity of the target, but is set in 

the code for test harness operation.  The code will continue to output target position as 

long as the target is visible to the camera and the master switch is ON. 
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IV.  OPERATION AND PERFORMANCE 

Nearly all testing and operation of the robotic arms was conducted using the test 

harness, in order to minimize risk to the NPADS vehicle and to provide independent 

testing of the arms during the concurrent development of the vehicle main body.  This 

chapter describes the procedures utilized during this thesis for operation of the robotic 

arms and provides performance data for the subroutines described in the previous 

chapter.  Though the majority of arm operations occurred on the test stand, a brief 

explanation of the operational procedures for an arm joined to the NPADS vehicle is 

provided as well. 

 

A. ROBOTIC ARM OPERATION 

As with testing of all powered equipment, there are procedures for start-up, 

operation, and shutdown of the robotic arm and its associated equipment.  The following 

sections describe the initial setup of the robotic arm, on the test stand and the main body, 

as well as these procedures. 

1.  Robotic Arm Test Setup 

The robotic arm components used during operation on the test harness are exactly 

the same as those used when the arm attaches to the NPADS vehicle, with the exception 

of a smaller, AC-powered PXI computer (described in Chapter II).  Figure 49 illustrates 

the location of the major components at the fixed base location.  Not shown in the figure 

is the floatation air supply system, comprised of a thirteen cubic foot compressed air tank 

and two pressure regulators supplying 5-10 psi air to the air pads, located beneath the 

granite table directly below the test harness.  To conserve battery life and to eliminate the 

need of a second set of DC-DC converters, three AC-powered DC power supplies are 

used to supply 5, 12, and 24 Volts to the various system components. 

As mentioned previously, the zero position of the arm is with the two links 

aligned directly forward of the test harness as shown in Figure 50.  This figure displays 
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also the connection of the shoulder motor housing to the test harness and the visual target 

located across the table from the arm. 

 
Figure 49 Robotic Arm Test Setup 

 

 
Figure 50 Test Harness Arrangement, Zero Reference Configuration 
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2.  Robotic Arm Pre-Operation 

In order to ensure safe, proper operation of the robotic arm while attached to the 

test harness, a sequence of tasks need to be performed prior to system operation.  

Adherence to these procedures ensures the safety of personnel and equipment as well as 

providing a systematic check of the robotic arm components.  Table 4 lists the Pre-

Operation procedures. 

 

Table 4 Robotic Arm Pre-Operation Checklist 
Action Notes 

1.  Clean Granite Table Use fine brush and Silicon spray 

2.  Check general condition of wiring and hoses  

3.  Verify floatation tank full and pressure set correctly Should provide 5-10 psi.  Test by briefly turning on air. 

4.  Turn on Test Computer No password required 

5.  Initialize PXI 7344 Motion Control Card Open MAX>Devices and Interfaces>PXI-7344>Device 
Resources, press Initialize in Upper Left corner 

6.  Turn on UMI Power 5V Power Supply, verify connection 

7.  Turn on Motor/Amplifier Power 24V Power Supply, verify connections 

8.  Verify Amplifier LEDs light GREEN Located next to MOLEX connector 

9.  Turn on Camera Power (only if using Vision system) 12 V Power Supply, verify connections 

10.  Turn on floatation air  

11.  Test for positive control of all three joints Use MAX>Devices and Interfaces>PXI-7344 
>Interactive>1D Interactive.  Use Velocity control at low 
speed (1000-2000 counts/s), press Apply and then Start 
choosing one joint at a time to verify control and 
feedback.  Use KILL to stop motion. 

12.  Align arm to Zero Reference Configuration Use 1D interactive to maneuver joints such that they align 
as in Figure 50.  As each joint is positioned correctly, 
press Reset Position and the joint position will be set to 
zero. 

WARNING:  If the feedback system is not initialized properly or feedback signals are lost for some reason, the joint 
WILL move, but at a faster velocity than anticipated.  Be ready to initiate KILL to stop motion.  If initialization is 
incorrect, reset the motion control card (see Post-Operation procedures), disconnect power to all components, reboot 
the test computer, and begin the Pre-Operation procedures again. 

 

3.  Robotic Arm Operation 

Once the Pre-Operation checklist is completed, the robotic arm is ready for 

operation using the Combined Control program described in the last Chapter.  On the test 
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harness, commands are sent from the test computer through the Motion Control Card to 

the UMI for redistribution to the motion control components. 

If the arm is integrated with the main body, there are two modes of operation 

available.  If the computer peripherals (i.e., mouse, keyboard, and monitor) are connected 

to the NPADS control computer, the Combined Control program data flow will act just as 

it would on the test harness.  If the NPADS vehicle is wireless, however, the robotic arm 

control program must follow Data Socket initialization procedures [Ref. 4] such that an 

offboard DAQ computer can act as a command terminal to upload commands via the 

wireless Ethernet.  Wireless operation of the Manual Control code was verified briefly 

through testing, but only to prove the capability. 

4.  Robotic Arm Post-Operation 

In order to conserve consumables and ensure that the system is ready for follow-

on operations, a series of Post-Operation procedures are required to shut down the 

system.  Table 5 lists the steps required following robotic arm operation. 

 

Table 5 Robotic Arm Post-Operation Checklist 
Action Notes 

1.  Align arm at safe position Using either Manual Control or MAX 1D Interactive, 
move the arm to a position on the table appropriate for 
stowage. 

2.  Exit Control Program If not already done 

3.  KILL all axes Use MAX 1D Interactive to KILL the Shoulder, Elbow, 
and Wrist joints 

4.  Turn off floatation air Refill tank, if necessary 

5.  Turn off Camera Power (if used)  

6.  Turn off Motor/Amplifier Power Open MAX>Devices and Interfaces>PXI-7344>Device 
Resources, press Initialize in Upper Left corner 

7.  Turn off UMI Power 5V Power Supply, verify connection 

8.  Reset 7344 Motion Control Card Use MAX>Devices and Interfaces>PXI-7344 (Status 
Page), press Reset Device, ensure that controller shows 
Power Up Reset. 

9.  Shut Down Test Computer Use Windows START menu to Shut Down the computer 
and turn off power when prompted.  

10.  Check general condition of wiring and hoses  

WARNING:  If the system is not shut down in order, inadvertent motion at system start-up may result. 
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5.  Robotic Arm NPADS Integration Setup 

For integration onto the NPADS main body, the robotic arm shoulder joint is 

mounted to the wing of the vehicle base plate.  Figure 51 provides the location of the 

major components of the motion control system. 

 
Figure 51 Robotic Arm NPADS Main Body Integration Setup 

 

Though the majority of the Pre- and Post-Operation procedures are the same as 

when the arm is connected to the test harness, there are several additional electrical 

features on the body mounted system to ensure user and equipment welfare.  These 

isolation switches, mentioned in Chapter II, are shown in Figure 52 and the procedures 

for their use are listed in Table 6.  The only switch not shown is the NPADS vehicle DC 

conversion plate switch which provides the 5V supply to the UMI Power Switch.  This 

switch is located on the underside of the second shelf, on the left side (looking forward), 

directly above the reaction wheel [see Ref. 4].  The camera will be wired into the vehicle 
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power distribution center; therefore, power will be supplied when the DC conversion 

switch is turned on. 

 
Figure 52 Robotic Arm Procedural Components on NPADS Vehicle 

 

Table 6 Robotic Arm On-Vehicle Checklist Addendum 
Pre-Operation 

Action Notes 

6a.  Verify batteries are fully charged and connected Two batteries in series should be above 21V 

6b.  Turn on DC conversion switch  

6c.  Turn on UMI Power Switch  

7a.  Turn on 24V Master Switch  

7b.  Turn on Arm Power Isolation Switch(es)  

Post-Operation 

Action Notes 

6a.  Turn off Arm Power Isolation Switch(es)  

6b.  Turn off 24V Master Switch  

7a.  Turn off UMI Power Switch  

7b.  Turn off DC conversion switch  

7c.  Charge batteries, if necessary Two batteries in series should be above 21V 

WARNING:  If the system is not isolated properly, inadvertent damage or injury could result. 
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B. ROBOTIC ARM PERFORMANCE 

The control algorithms developed for the robotic arms, described in the previous 

Chapter, were each tested to ensure that acceptable performance standards were met.  The 

grading criteria included precision of joint movement versus commanded input and 

system response speed.  The following sections will illustrate the results of these tests, in 

which all of the subroutines proved highly reliable.  This performance analysis also 

served to verify the PID system gains derived from the tuning of the motor through the 

Measurement & Automation Explorer. 

1.  Manual Control Performance 

The first software to be tested was the Manual Control code.  Utilizing the test 

harness, the arm was initialized to zero angle settings for all three joints, as described 

above, using the 1D Interactive feature of MAX.  The Combined Control code was 

started and the Manual Control code master switch was placed in the ON position.  All 

three joints were powered up using the isolation switches and a series of simultaneous 

movements and velocity changes were used as the profile.  Table 7 provides the series of 

commands provided to the robotic arm.  Figure 53, Figure 54, and Figure 55, below, 

provide the Desired (commanded) and Actual (output) positions and velocities for the 

shoulder, elbow, and wrist joints, respectively.  In all three cases, the joint motors 

responded well to the command inputs, showing no degradation even with all three joints 

online.  Of note, the Actual Velocity matches the Desired only during a positional change 

and Desired Velocity is entered as an absolute and translated by the controller based on 

relative location to the Desired Angle. 

The single disparity in this test shows up on the right side of the Angular Velocity 

plot for the Elbow (Figure 54, bottom right).  There are two spikes in the Desired 

Velocity even though Elbow movement is stopped.  This discrepancy comes from one of 

the Wrist joint air pads being improperly aligned and introducing a minute frictional 

force during Shoulder movement which caused the Elbow to initiate motion to hold 

position.  Alignment of the air pads alleviated the divergence, but the inadvertent 

discrepancy proves that the system will adjust to maintain a commanded value. 
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Table 7 Manual Control Code Test Profile 
Joint Command Notes 

-20 degrees, 3 degrees/s Initial set velocity at power up 

1.25 degrees/s  

-37 degrees  
Shoulder 

-2 degrees, 2.5 degrees/s Velocity change after move starts. 

5 degrees/s Initial set velocity at power up 

4 degrees/s  

15 degrees  

9 degrees/s, changed to 4 degrees/s  

-50 degrees, 9 degrees per second Velocity change after move starts 

Elbow 

0 degrees, 3.5 degrees/s  

3.75 degrees/s Initial set velocity at power up 

2.5 degrees/s  

-22 degrees  
Wrist 

-0.5 degrees, 3 degrees/s Velocity change after move starts 

 

 
Figure 53 Manual Control Profile for Shoulder Joint 
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Figure 54 Manual Control Profile for Elbow Joint 

 

 
Figure 55 Manual Control Profile for Wrist Joint 
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2.  Home Finder Performance 

The single function tested on the NPADS main body was the Home Finder 

algorithm.  MAX was used to initialize the robotic arm in a false zero reference frame to 

prove that the zero position would be reset during the algorithm.  Testing occurred on the 

vehicle to verify that the stowed position of the arms would not negatively impact any of 

the arm or vehicle assemblies. 

As described in Chapter III, the right Shoulder joint was moved in the positive 

direction until contact was made with the Home Switch, Shoulder position was reset to 

the correct zero reference position, and then the procedure was repeated for the Elbow.  

Figure 56 shows the position of the Home Switch (i.e., On or Off) and the movement of 

the two joints.  As illustrated, the Shoulder is reset to 158 degrees (175,500 counts) and 

the Elbow to -118 degrees (-65,750 counts).  Figure 57 provides the velocities of the two 

joints through the algorithm; as stated in Chapter III, motion occurs at fixed velocities. 

 
Figure 56 Home Finder Profile for Shoulder and Elbow Position 
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Figure 57 Home Finder Profile for Shoulder and Elbow Velocity 

 

3.  Commanded Angle Performance 

Commanded Angle testing utilized the test harness.  MAX was again used to set 

the proper zero reference condition and then the arm was moved slightly off zero.  The 

Combined Control code was started and the Commanded Angle master switch was placed 

in the ON position.  A series of angular commands were given to the arm using the digital 

controls and the GO switch.  Table 8 supplies the series of commands provided to the 

robotic arm.  Figure 58 provides the Desired Angle and the joint position and velocity 

response for both the Shoulder and Elbow.  Both joints responded accurately. 

Though not easily recognizable in the plots, the Desired Angle for the Shoulder 

joint actually leads motion initiation.  This is due to algorithm information flow.  The 

user enters the desired angles, obviously one at a time, then initiates motion with the GO 

switch.  During testing, the Shoulder angle was always entered first and therefore the 

Desired Angle changes immediately, but the arm does not respond until the switch is 

toggled.  And again, the velocity of each joint is held constant within the algorithm. 
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Table 8 Commanded Angle Control Code Test Profile 
Command Shoulder Angle 

(degrees) 
Elbow Angle 

(degrees) 

1 0 0 

2 -30 25 

3 15 -35 

4 0 0 

 

 
Figure 58 Commanded Angle Profile for Shoulder and Elbow 

 

4.  Commanded X-Y Performance 

Commanded X-Y testing also utilized the test harness.  And again, the zero 

reference position was initiated using MAX and the arm was moved slightly off zero.  

The Combined Control code was started and the Commanded X-Y master switch was 

placed in the ON position.  Various planar positioning commands were given to the arm 

using the digital controls and the GO XY switch.  Table 9 provides the series of positions 

supplied to the robotic arm.  Figure 59 illustrates the path of the wrist joint as it is driven 
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to the Desired position.  Figure 60 shows the joint position and velocity response for both 

the Shoulder and Elbow required to place the wrist in the Desired position. 

Due to the set deadband (+/- 10 counts) of the joint motors, the actual positions 

vary slightly from those commanded.  The deadband is a region on the encoder, defined 

by a motion controller default setting using MAX, within which a commanded movement 

is considered complete.  The positional error due to this setting is within one tenth of an 

inch, therefore the arm joint responses are deemed adequate and accurate. 

Command 6 (see Table 9) was included to test system response to an illegal 

command, one beyond the reach of the arm.  As shown, even though the command was 

given, the arm remained motionless as anticipated.  The Desired X position suffers from 

the lead time issue discussed in the previous section, since all positions were entered X, 

then Y prior to GO XY initiation.  Once again, the absolute velocity of each joint is held 

constant within the algorithm. 

 

Table 9 Commanded X-Y Control Code Test Profile 
Command Wrist X Position 

(inches) 
Wrist Y Position 

(inches) 

1 0 20.5 

2 -20 4 

3 -2 15 

4 -10 12 

5 2 18 

6 21 18 

7 0 20.5 
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Figure 59 Commanded X-Y Profile for Wrist Position 

 

 
Figure 60 Commanded X-Y Profile for Shoulder and Elbow 
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5.  Visual Target Acquisition Performance 

The vision-based Target Acquisition algorithm was tested primarily to establish a 

reliable conversion factor, as discussed in Chapter III, which allowed for an accurate 

distance measurement of a circular target from the camera boresight (or center of the 

wrist joint) within the range of motion allowable from the fixed base test harness.  A 

solid black circle, six and a quarter inches in diameter, was used as a primitive target.  

Measurements were taken at two extreme positions, straight out (all joints at the zero 

position, 46-1/4 inches boresight to target) and fully extended left (Shoulder at -90 

degrees, Elbow at 0 degrees, and Wrist at 90 degrees, 66-1/2 inches boresight to target), 

using a variety of pixels to inches conversion factors. 

The initial settings at each of the two positions were based off the geometric 

relationship between distance from camera to target and the pixel width of the frame; 

however, due to curvature of the lens, a “fish-eye” effect is experienced and the snapshot 

has a residual curvature that produces an error in this approach.  Therefore the analysis 

provided in Table 10 and Table 11 established the conversion factors necessary at each 

position (10.00 straight forward and 7.00 fully extended left).  The addition of a range 

sensor, or possibly just a second camera, would allow a linear interpolation estimation to 

be made for this factor that would provide reasonably accurate X-positions on a 

repeatable basis. 
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Table 10 Visual Target Acquisition Code Test Profile (Straight Out) 
Conversion Factor 

(pixels/inches) 
Target X Distance 

(inches) 
Visual X Distance 

(inches) 

0 0.00 

8 9.88 

16 19.02 

-8 -9.51 

8.20 

-24 -26.20 

0 0.00 

8 9.19 

16 18.26 

-8 -9.30 

8.60 

-24 -25.58 

0 0.00 

8 8.30 

16 15.80 

-8 -8.10 

10.00 

-24 -27.50 

 

Table 11 Visual Target Acquisition Code Test Profile (Fully Extended Left) 
Conversion Factor 

(pixels/inches) 
Target X Distance 

(inches) 
Visual X Distance 

(inches) 

0 0.00 

8 9.97 

16 19.42 

-8 -9.45 

5.82 

-24 -27.32 

0 0.00 

8 5.70 

16 11.30 

-8 -5.50 

10.00 

-24 -15.90 

0 0.00 

8 8.29 

16 16.14 

-8 -8.00 

7.00 

-24 -22.71 
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V.  SUMMARY AND CONCLUSIONS 

A. SUMMARY 

The objective of this thesis was to develop a set of robotic arms for the NPS 

Planar Autonomous Docking Simulator (NPADS) servicing vehicle by designing a 

motion control system, manufacturing a skeletal support structure, integrating the 

mechanical and electronic components, and constructing the control software necessary 

to operate the system.  Off-the-shelf hardware components were used to facilitate 

development, since the purpose of the simulator is to provide a test bed for further 

research.  Following wiring and integration of the various third party components, the 

National Instruments LabVIEW suite was used to develop the various algorithms for 

control of the robotic arms.  Manual control was developed first to test system integrity; 

then, a series of autonomous control subroutines were created to provide functionality 

within the overall control program of the NPADS vehicle.  Incorporation of a wrist 

mounted camera enabled the arms to provide a limited, stand alone input for autonomous 

operation.  This research provided two robotic arms ready for integration onto the 

servicing vehicle, integration of grappling mechanisms or manipulators, or testing of 

advanced control algorithms. 

 

B. FOLLOW-ON RESEARCH 

1.  Improvements 

The following improvements to the NPADS robotic arms, servicing vehicle, and 

test facility are recommended: 

• Define the method of command for the robotic arms, and integrate the 

autonomous control algorithms into the servicing vehicle control code.  

Currently, one arm is mated to the servicing vehicle, the other is mounted on 

the test harness to facilitate further testing. 

• Modify the control code for the arms to act in a coordinated manner.  The 

algorithms built for this thesis are capable of being modified to allow this type 
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of operation.  Coordinated control would assist the main body control 

algorithm by counteracting the torque effects of a single arm in motion as well 

as providing the basis for coordinated grapple and capture approaches. 

• Develop a vision algorithm for the servicing vehicle targeting camera such 

that it can provide target position information as well.  Once the wrist camera 

and servicing vehicle targeting camera are working in concert, develop an 

algorithm to localize position of the target in two dimensions.  Implementation 

of some form of range finder may be necessary. 

• Develop a larger air-bearing surface on which to conduct operation of the 

simulator.  With the addition of the robotic arms, the granite table will soon 

become restrictive.  To act as a proper test bed for testing rendezvous and 

capture devices, the NPADS system will need a significantly larger area in 

which to operate. 

• Develop a capture method using the robotic arms to initiate docking with a 

target vehicle.  Though the NPADS vehicle can act as a test bed for advanced 

capture devices, a simple method must be devised in order to test docking 

devices alone. 

2.  Future Work 

The addition of robotic arms to the NPADS vehicle greatly increases the 

capability of the simulator and moves one step closer to providing an operational test bed.  

As stated above, now that the arms are functional, it is critical to integrate the NPADS 

system into a single set of control laws.  Once the controls are unified, perhaps a more 

efficient means of autonomous control can be developed using advanced programming 

techniques, such as fuzzy logic or neural networks, so that the simulator can adapt as it 

operates.  Further, the robotic arms open a plethora of research opportunities at NPS (and 

elsewhere) in development of dexterous manipulators, capture devices, docking 

mechanisms, and smart targets. 

The vision of the simulator was to provide a system that would prove the 

necessity of a revolution in satellite design.  Building satellites that could have much 
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longer life expectancy due to repair and refueling by a system such as this is an important 

consideration from both operational and engineering standpoints.  This fact opens up 

other areas of continued research, including space operations and architecture, operations 

analysis, systems engineering, and risk assessment.  The NPADS system provides the 

potential for many future research opportunities that will support a variety of Department 

of Defense issues and interests among numerous academic disciplines. 
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APPENDIX A:  STRUCTURAL DRAWINGS 

As mentioned in Chapter II, the joint motor support structures, or joint motor 

housings, were constructed using 6061-T6 Aluminum.  The Figures that follow provide 

the mechanical specifications for the individual pieces that comprise the housings and 

linkages.  The housings were designed such that the joint motors are securely stationed in 

a fixed position to ensure positional repeatability.  The open architecture provides heat 

dissipation as well as being light-weight.   

The top plate, shown in Figure 61, is split and clamped using two 10-32 screws in 

order to accommodate the shape of the servo motor and increase stability.  The bottom 

plate (Figure 62) includes mounting holes for two air pads on the elbow and wrist and a 

center hole that takes advantage of the hollow shaft design of the motors by allowing the 

air supply line for the air pads to extend through the hollow shaft and this plate.  Figure 

63  shows the standoffs for the two housing types (shoulder and elbow/wrist).  The 

shoulder housing has shorter standoffs since there is no need to use the hollow shaft for 

air supply.  The elbow and wrist housings also include a back plate, shown in Figure 64, 

which firmly attaches to the joint motor housing with seven 10-32 screws and the linkage 

to the previous joint, with four additional 10-32 screws.  Figure 65 shows the arm 

linkages, with eight mounting holes, for M6 screws, to the output shaft of the joint motor 

and a larger hole central to these eight which allows access to the joint motor hollow 

shaft.  At the opposite end of the linkage are the four mounting holes which attach at the 

back plate and a cutout in the bottom of the channel that enables the joint motor power 

and feedback lines to lie inside the channel as well. 
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Figure 61 Joint Motor Housing Top Plate 
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Figure 62 Joint Motor Housing Bottom Plate 
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Figure 63 Joint Motor Housing Standoffs (Shoulder, short; Elbow/Wrist, long) 



 
Figure 64 Elbow/Wrist Joint Motor Housing Back Plate 
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Figure 65 Arm Linkage 
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APPENDIX B:  WIRING SPECIFICATIONS 

Due to the interaction of the various pieces of the motion control system, a 

common wiring scheme was developed.  Beginning with the two integrated wiring 

harnesses (power and feedback) coming from the joint motors, the following figures and 

tables provide the electrical path for each of the signals necessary to control the robotic 

arms.  Figure 66 illustrates the pin location (looking toward the pins on the male 

connector, opposite numbering for the female receptacle) for the standard AMP 

connectors used on the joint motors.  The motor power cable uses AMP 206705-2 and the 

feedback cable uses AMP 206152-1.  Table 12 provides the pinout for the two cables 

(Note: wire colors are not included, the first three motors were checked and a different 

color scheme was used for each – the pins are standard though). 

 
Figure 66 AMP Connector Pinouts 
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Table 12 Motor Connector Pinout 
POWER FEEDBACK 

Function Pin # Function Pin # 

Phase A 1 Hall Sensor 1 15 

Phase B 2 Hall Sensor 2 19 

Phase C 3 Hall Sensor 3 17 

Shield/GND 5 GND 23 

5V 22 

Encoder A 9 

Encoder A- 10 

Encoder B 12 

Encoder B- 11 

Encoder I 13 

Encoder I- 14 

 

Shield 24 

 

The electrical path for motor power (24 V) travels from the batteries, through the 

isolation switches discussed in Chapter II, to the amplifier, and, finally, to the joint 

motor.  Table 13 provides the pinout of the harness connecting the servo amplifier and 

joint motor power cable. 

 

Table 13 Motor Power Cable to Amplifier Harness Pinout 
Function Wire Color Socket # Connects To 

Phase A White 1 Motor A (amplifier) 

Phase B Green 2 Motor C (amplifier) 

Phase C Red 3 Motor B (amplifier) 

Shield/GND Black/Shield 5 Grounding Screw (amplifier) 

 

Further, in order to facilitate modularity and connection between components, a 

series of harnesses were developed to break out the feedback lines needed by the UMI 

and the amplifiers.  Figure 67 shows the pin location of the MOLEX connectors used to 

split the feedback path (again, looking toward the pins on the male connector, opposite 

numbering for the female receptacle).  Table 14 provides the wiring arrangement for the 
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intermediate harnesses connecting motor feedback cables with UMIs and amplifiers.  

Figure 68 shows another standard MOLEX connector used to connect the feedback line 

to the amplifier.  Table 15 illustrates how this connector is used and provides the pinout 

for the servo amplifiers. 

 
Figure 67 MOLEX Connectors Pinouts for Feedback Harnesses 

 

Table 14 Motor Feedback to UMI/Amplifier Harness Pinout 
Function Wire Color Socket # To Amplifier 

Pin # 
To UMI 

Pin # 

Hall Sensor 1 Green 15 5  

Hall Sensor 2 Green-White 19 3  

Hall Sensor 3 Green-Black 17 1  

GND Orange (White-Black)1 23 2 8 

5V White 22  4 

Encoder A Red 9  1 

Encoder A- Red-White 10  5 

Encoder B Red-Black 12  9 

Encoder B- Blue 11  2 

Encoder I Blue-White 13  6 

Encoder I- Blue-Black 14  10 

Shield Shield/White-Black 24  11 

Analog GND Black2  4 7 

Analog Output Orange-Black2  6 3 
1  White-Black Connects Amplifier Ground with UMI Ground (Common) 
2  Analog Signal from UMI (Controller) to Amplifier 
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Figure 68 MOLEX Connector for Amplifier Pinout 

 

Table 15 B12A6L Servo Amplifier Pinout 
Connector Pin Function Wire Color/Notes 

1 +10V@3mA OUT NOT USED 

2 SIGNAL GND White-Black (Ties to UMI GND) 

3 -10V@3mA OUT NOT USED 

4 +REF IN Orange-Black (Analog OUT from UMI) 

5 -REF IN Black or Black-White (Analog GND from UMI) 

6 -TACH IN NOT USED 

7 +TACH/GND NOT USED 

8 Current Monitor 
OUT 

NOT USED 

9 INHIBIT IN NOT USED 

10 +V HALL OUT NOT USED 

11 GND NOT USED 

12 HALL 1 IN Green 

13 HALL 2 IN Green-White 

14 HALL 3 IN Green-Black 

15 Current REF OUT NOT USED 

P1 

(Figure 68) 

16 FAULT OUT NOT USED 

1 MOTOR A White (Phase A) 

2 MOTOR B Red (Phase C) 

3 MOTOR C Green (Phase B) 

4 POWER GND Grey (Terminal 6 or 11, Table 2) 

P2 

(Screw 
Terminals) 

5 HIGH VOLTAGE Yellow (Terminal 5 or 10, Table 2) 
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Figure 69 shows the internal layout of the Universal Motion Interface.  The UMI 

requires a 5V input so that it can provide a 5V output through Terminal Screw #5 (this 

provides power to the joint motor Hall Sensors, which in turn provide commutation 

feedback to the amplifiers).  Table 16 provides the UMI wiring pinout required for each 

joint motor.  The UMI communicates these signals to the 7344 Motion Control Board 

using a 68-pin I/O cable (National Instruments Part #SH68-C68-S). 

 
Figure 69 UMI Layout (From: Ref. 6) 
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Table 16 UMI Pinout Per Axis 
Terminal Screw # Function Wire Color 

1 Forward Limit NOT USED 

2 Home Input White1 

3 Reverse Limit NOT USED 

4 Inhibit Input NOT USED 

5 Digital GND White-Black/SHD and Black1 

6 Analog OUT Orange-Black 

7 Analog Output GND Black 

8 Inhibit Output NOT USED 

9 Step (CW) NOT USED 

10 Dir (CCW) NOT USED 

11 +5V OUT White 

12 Digital GND Orange 

13 Encoder Phase A Red 

14 Encoder Phase A- Red-White 

15 Encoder Phase B Blue 

16 Encoder Phase B- Red-Black 

17 Encoder Index Blue-White 

18 Encoder Index- Blue-Black 
1  Home Switch Harness – only on shoulder (Axis 1) and elbow (Axis 4) 
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APPENDIX C:  MOTION CONTROLLER SETTINGS 

A. DEFAULT 7344 SETTINGS 

Table 17, on the following pages, provides a page by page listing of required 

settings for 7344 Motion Controller initialization, using the Default 7344 Settings option 

of the Measurement & Automation Explorer (MAX).  These settings are utilized by either 

arm.  Not all settings are listed for every page.  For those not listed, default values are 

used.  Formatting for the table as compared to the MAX interface is shown in Figure 70. 

 
Figure 70 MAX Default 7344 Settings Definitions 
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Table 17 Default 7344 Settings 
Axis Configuration 

Axis Type Servo 

Axis Enabled 1 Enabled (1,3, and 4) 

Disabled (2) 

Encoder & Stepper Resolution 

(Encoder counts per revolution) 

Axis 1:  400,000 

Axis 3,4:  200,000 

Axis Resources & Update Period 

(Control Loop Update Period) 

188 microseconds 

Axis Resources & Update Period 

(Primary Feedback) 

Encoder 1, 3, and 4,  

respectively 

Axis Resources & Update Period 

(Primary Output) 

DAC Channel 1, 3, and 4, 
respectively 

Axis Resources & Update Period 

(Secondary Feedback) 

None 

Axis Configuration 

Axis Resources & Update Period 

(Secondary Output) 

None 

Axis Settings 

Home & Limit Switch Settings 

(Forward Limit Switch) 

Disabled 

Home & Limit Switch Settings 

(Reverse Limit Switch) 

Disabled 

Home & Limit Switch Settings 

(Home Switch) 

Enabled, Active Low Polarity 

Software Limit Settings 

(Forward Software Limit) 

Axis 1:  Disabled 

Axis 3:  Enabled, 60,000 counts 

Axis 4:  Enabled, 66,000 counts 

Software Limit Settings 

(Reverse Software Limit) 

Axis 1:  Disabled 

Axis 3:  Enabled, -60,000 counts 

Axis 4:  Enabled, -66,000 counts 

Motion I/O 

Inhibit Output Settings Disabled 

Control Loop ALL VALUES See Table 18 for values from 
Calibration/Servo Tune 

Load Torque Limits & Offsets in: Volts 

Primary DAC Output 

(Positive Torque Limit) 

10 Volts 

Miscellaneous 

Primary DAC Output 

(Negative Torque Limit) 

-10 Volts 
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 Primary DAC Output 

(Torque Offset) 

0 Volts 

Trajectory Settings 

Operation Mode Velocity 

Stop Mode Kill 

Load Velocity in: counts/s 

Velocity 2500 counts/s 
Trajectory Settings 

Advanced Move Settings 

(Velocity Threshold) 

38,000 counts/s 

Move Complete Criteria Deadband 10 counts 

Home & Index Settings 

Home & Index Settings Reset Position After: Never 

Digital I/O Settings 

Digital I/O Settings ALL Defaults 

Gearing Settings 

Gearing Settings Gearing Enabled Disabled 

ADC Settings 

Channel 1,3,4:  Enabled 

2:  Disabled ADC Settings 

ADC Range -10 to +10 Volts 

Encoder Settings 

Encoder 1,3,4:  Enabled 

2, Disabled Encoder Settings 

Filter Frequency 1,3,4:  400 KHz 

PWM Settings 

PWM Settings PWM Disabled 
1  Enables only active axes:  Axis 1 (shoulder), Axis 3 (wrist), and Axis 4 (elbow) 
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B. SERVO TUNE GAINS 

As described in Chapter III, MAX was utilized to manually tune the six brushless 

servo joint motors, the required gains were identified for each.  Table 18 lists these gains 

identified for stable operation of the joint motors.  Once established in Servo Tune, these 

values automatically save to the Default 7344 Settings/Axis Settings/Control Loop page, 

allowing proper initialization at power-up. 

 

Table 18 PID Control Gains for NPADS Robotic Arms 
Left Arm Kp Kd Ki Td Right Arm Kp Kd Ki Td 

Shoulder 25 275 0 2 Shoulder 50 600 0 2 

Elbow 85 355 0 2 Elbow 15 160 0 2 

Wrist 85 330 0 2 Wrist 50 250 0 2 

 

As mentioned in Chapter III, MAX also contains routines to produce Step 

Responses, Bode Plots, and Trajectory Responses.  Figure 71, Figure 72, and Figure 73 

provide examples of each of these tools, respectively, for one of the joint motors.  Due to 

the low speed, high torque operation expected of the joint motors, Step Response was the 

primary driver of the tuning process.  Adjusting the gains allowed for minimization of the 

Maximum Overshoot and Settling Time, ensuring optimum performance and limited 

vibration of the motors. 
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Figure 71 MAX Step Response Plot 

 

 
Figure 72 MAX Bode Plot 

 

 
Figure 73 MAX Trajectory Response Plot 
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